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A new fast numerical method for solving the three-dimensional Stokes’ equations in the 
presence of suspended particles is presented. The fluid dynamics equations are solved on a 
lattice. A particle is represented by a set of points each of which moves at the local fluid 
velocity and is not constrained to lie on the lattice. These points are coupled by forces which 
resist deformation of the particle. These forces contribute to the force density in the Stokes’ 
equations. As a result, a single set of fluid dynamics equations holds at all points of the 
domain and there are no internal boundaries. Particle size, shape, and deformability may be 
prescribed. Computational work increases only linearly with the number of particles, so large 
numbers (500-1000) of particles may be studied efficiently. The numerical method involves 
implicit calculation of the particle forces by minimizing an energy function and solution of a 
finite-difference approximation to the Stokes’ equations using the Fourier-Toeplitz method. 
The numerical method has been implemented to run on all CRAY computers: the implemen- 
tation exploits the CRAY’s vectorized arithmetic, and on machines with insufficient central 
memory, it performs efficient disk I/O while storing most of the data on disk. Applications of 
the method to sedimentation of one-, two-, and many-particle systems are described. 
Trajectories and settling speeds for two-particle sedimentation, and settling speed for 
multiparticle sedimentation from initial distributions on a cubic lattice or at random give 
good quantitative agreement with existing theories. 0 1988 Academic Press, Inc. 

1. INTR~D~JCTI~N 

We present a new fast numerical method for solving the three-dimensional 
Stokes’ equations in the presence of discrete suspended elastic particles (rigid 
particles are modelled as slightly deformable). This method is an extension of the 
two-dimensional method for studying flows with immersed boundaries introduced 
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3D STOKES’ FLOW WITH PARTICLES 51 

by Peskin [12] for studying blood flow in the heart, and previously applie 
Fogelson [S] in an investigation of platelet aggregation during blood clotting. 
salient feature of this immersed-boundary method is the replacement of material 
boundaries by suitable contributions to a force density term in the fluid dynamics 
equations. A single set of fluid dynamics equations then holds in the entire domain 
and there are no internal boundary conditions. In the present context, t 
technique permits the study of particles of different sizes and shapes as well 
particles that deform. Also, since each particle influences the fluid motion, a 
hence the motion of other particles, only through its contribution to the fluid force 
density, and since this contribution is determined independently for each par 
the computational work associated with the particles increases only linearly 
the number of particles. Hence, the dynamics of large multiparticle systems, perhaps 
involving as many as 1000 particles, may be investigated. 

The numerical method is designed to study a model fluid-particle system in 
which each particle is represented by a finite number of fluid points. These points 
are joined together by a prescribed set of elastic links which generate internal 
particle forces whose function is to cause the nearby fluid to move as a single unit. 
(This representation of an elastic particle is motivated by a derivation of the 
equations of elasticity obtained by considering the continuum limit of ensembles 
points connected by spring forces.) The internal particle forces and the appli 
external forces determine the overall fluid motion. Since the points which make u 
the particles are lluid points, they move at the local fluid velocity, We note that t 
use of a distribution of points to represent each particle permits us to study particle 
rotation as well as translation. 

The motion of the fluid is described by the inhomogeneous Stokes’ equations. 
These equations are approximated, using finite differences, at points of a com- 
putational lattice, and the resulting discrete Poisson equations are solved by means 
of the Fourier-Toeplitz method [4]. The motion of the points which make up the 
particles is tracked independently of the lattice using a simple Euler scheme. 
Explicit evaluation of the internal particle forces produces violent instabilities in the 
motion of the particles. For this reason, these forces are calculated ~~pZi~~tiy by 
minimizing a nonlinear energy function 4. The minimization is accomplished using 
Gill and Murray’s modified Newton’s algorithm [7, S] which can handle the 
indefinite Hessian matrices of 4 that are frequently encountered. The ~~rne~ical 
method has been implemented for use on @RAY computers; the imp~e~e~tatio~ 
exploits the GRAY’s ability to do vector arithmetic, and, on machines with 
insufftcient central memory capacity, it uses asynchronous I/O ~i~p~t/o~t~~t) 
routines to perform efficient disk I/O while storing most of the data on the disk (see 
[6-j for details). 

We present promising preliminary results from our application of the n 
method to sedimentation problems. We expect that the method will be a 
tool for studying many types of suspension flows. We plan, in particular, to 
incorporate the method into our ongoing study of platelet aggregation in or 
extend that study to three dimensions. 
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2. MODEL SYSTEM 

We study the interaction of a viscous fluid with a collection of discrete model 
particles inside a three-dimensional cube B of side L. We assume that inertia is 
negligible and we describe the fluid motion by the Stokes’ equations, 

o= -Vp+pAu+f(x, t) (1) 

o=v.u. (2) 

Here, u is the fluid velocity, p the pressure, and p the viscosity. The force density 
f(x, t) is constructed to have period L in each of the coordinate directions. We seek 
a solution II, p which is similarly periodic. The Stokes’ equations hold for all points 
x in the cube B. 

Each model particle, say particle k, is constructed from a finite collection of 
points xkl. Each such point is assumed to have no inertial mass and to move at a 
velocity which is a weighted average of the fluid velocity in the immediate 
neighborhood: 

kkf dt = 1 4x, t) 6,(x - xdf)) dx. 
B 

(3) 

In this formula, the function 6,(x) is a smooth function of integral 1 with support in 
a sphere of radius s. (Here and in Eq. (5), if a point in the support of 6, is outside 
the basic periodic box B, its periodic image inside B should be used instead.) The 
reason for using this local average, instead of just evaluating u at xkl, will appear 
below. 

The points {x,J which comprise the kth particle are linked to one another by a 
prescribed set of elastic links. For example, an octahedral particle can be 
constructed from seven points, six at the vertices and one at the center, with each 
vertex joined by elastic links to its four neighboring vertices and by a similar link to 
the center point. The links generate internal particle forces which act, through the 
mediation of the fluid, to resist deformation of the particles. It may be helpful to 
think of the link forces as approximations to the distribution of forces which a real 
particle exerts on the adjacent fluid. For a rigid particle these forces are just those 
necessary to make the motion that of a rigid body. In this paper, we consider only 
the limiting case of very stiff elastic links in order to approximate rigid particles as 
slightly deformable. For simplicity, we assume that each link acts as a linear spring. 
Thus, the resultant of the link forces which act on point xk, is given by 

Here, L, is the set of indices of the points linked to the point whose index is 1, S[, is 
the stiffness of the link joining points x,&l and xkm, and rfm is the resting length of 
this link. We assume throughout this paper that all of the particles have the same 
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number of points (M) and the same structure of links and note that this structure is 
specified by the sets L,, 1= 1, . . . . M. We note also that the sets LI are defined once 
and do not change during the course of the calculations. (Generalization to 
particles constructed from different numbers of points or with diffe~~~~ 
configurations of links is immediate.) 

In addition to the internal link forces, application-dependent external forces, sue 
as gravitational forces, as well as inter-particle forces, such as electrical forces, may 
act on the points of each particle. Both the internal and external forces influence 
particle motion only through the mediation of the fluid. They do this by 
contributing to the force density f(x, t) which appears in the Stokes’ equatio 
More precisely, if we assume that there are N particles each constructed from 
points xk[, then we define the force density by 

f(x, t)= f g (f$+ff;;l’)6s(x-x,,(t))-c. 
k=l I=1 

Here, fgt is the applied external force on point x kl, fg is the resultant of the spring 
forces of the links joining xkI to other points in the kth particle, and 6,(x) is the 
same weight function which is defined in Eq. (3). Thus, each force f $‘;’ or f 2 is “felt’” 
by the fluid over a small volume surrounding the point xk/. This gives xki an 
effective radius of order s (see Fig. 1). We emphasize that the force density f is the 
only way that the fluid feels the presence of the particles. The vector c in Eq. (5) is a 
constant vector chosen so that 

J f(x, t) dx = 0. 
B 

FIG. 1. Cross section of an octahedral particle. The boxes indicate points xki and are joined by line 
segments representing elastic links. The circular arcs enclose the region in which the particle makes 
a contribution to the force density f(x, t). Figures reprinted with the permission of the Society 
for Industrial and Applied Mathematics from Advances in Multiphase Flow and Related Problem, 
6. Papanicolaou, Ed. All rights reserved. Copyright 1986 by the Society for Industrial and Applied 
Mathematics. 
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This is a compatibility condition for the Stokes’ equations in the periodic box B, as 
may be seen by integrating Eq. (1) over the cube B and then invoking the 
periodicity of u and p. We remark that the compatibility condition JB f dx = 0 is 
automatically satisfied by f (int). This follows from the translation-invariance of the 
energy function from which funt) is derived. (See below.) 

The Stokes’ equations may alternatively be written in the form 

V*(Vp)=V*f (7) 

w=f-vp (8) 

Au = -(l/,B)w. (9) 

Here, w is the projection of the force density onto the space of divergence-free 
vector fields. In this formulation (which exploits the simplicity of the periodic 
domain) the pressure is computed first by solving one Poisson equation and then 
the velocity is computed by solving a second Poisson equation. Furthermore, in 
Eq. (9), the components of the velocity u are uncoupled from each other. 

Associated with Eqs. (7) and (9) are the compatibility conditions 

and 

J V.fdx=O 
B (10) 

J wdx=O, (11) 
B 

respectively. The divergence theorem and the periodicity of f imply that Eq. (10) is 
satisfied, while the compatibility condition on f (see Eq. (6)) and the periodicity of 
p ensure that Eq. (11) holds. 

To summarize our discussion thus far, we model physical particles by 
constructing each particle out of a set of points {xkl}. These points are subject to 
external forces as well as to internal forces designed to resist changes in the 
particle’s size and shape. These forces all contribute to the force density f as 
described in Eq. (5); f determines the fluid motion by Eqs. (7t(9); and the points 
(xkl} move at the local fluid velocity as described by Eq. (3). We repeat that the 
main reason for representing particles by collections of localized forces is the 
relative simplicity of the resulting equations; a single set of fluid dynamics equations 
is valid everywhere in the domain, and there are no internal boundary conditions. 

We conclude this section with a discussion of the energy flow in the model system 
defined by the foregoing equations. In particular, this discussion explains why it is 
important to use the same weight function 6, in Eqs. (3) and (5). 

We assume here that the internal forces are negative gradients of a translation- 
invariant function, the elastic internal energy. That is, 

dE fint - 

ki - axk[’ 
(12) 
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where E(. . . xkl . . .) has the property 

E(xl, + a, . . . . XNM+akE(xll, . . . . XNM) (13) 

for every constant displacement a. (In Eq. (12), the expression a/ax,, means t 
gradient with respect to xk[.) It follows directly from Eq. (13) and the arbitrariness 
of a that 

An example of such a function E is given by the elastic energy function 

(Note that each link appears twice in the sum, hence the factor $ instead of 4)” This 
function is obviously translation-invariant, and its negative gradient is the system of 
internal forces given by Eq. (4). 

We now consider the rate of change of the elastic internal energy as the points xk! 
move according to Eq. (3). According to the chain rule 

Next, we rewrite Eq. (5) in the form 

f(x, t) = fyx, t) + fyx, t), (1-o 

where 

fint(x, t) = c fg 6,(x-x/J (181 
kl 

f yx, t) = c f Et 6,(x - Xkl) - e. 
kl 

Note that the constant c, which is chosen to enforce the compatibility condition 
JB f dx = 0, is only associated with the external forces, since je f int dx = 0 foIl~ws 
directly from the translation invariance of E. 
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Because we have used the same function 6, in Eqs. (3) and (5), we may now 
substitute Eq. (18) into (16) to obtain 

dE 
z=-B s 

u(x, t) . fint(x, t) dx 

= - 
s 

u(x, t) . f(x, t) dx + pt, 
B 

(20) 

where 

et = s u(x, t) * fyx, t) dx (21) 
B 

is the rate at which the external forces do work in the system. 
It remains to evaluate jB u . f dx. This is done by applying sB u . ( ) dx to all terms 

in the Stokes’ equations. The result is 

o== -j-Bu.vpdx+pJ wAudx+J u*fdx. (22) 
B B 

Integrating by parts in the periodic domain B, we find 

- s u*Vpdx= (V.u)pdx=O, 
B s B 

since V. u = 0, and 

u.Audx=p 
a au. 

q----- 
axjaxj 

(23) 

(24) 

where fi is the rate at which heat is generated by viscous dissipation [l, p. 1531. 
(Note that A&O.) Thus, Eq. (22) implies 

s u.fdx=I;I. (25) 
B 
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Substituting this result into Eq. (20), we obtain 

which is the appropriate law of conservation of energy for this massless system. In 
case tiext - - 0, we have, since ti > 0, the inequality dE/dt d 0. This shows that t 
system cannot cycle in the absence of externally applied forces. 

3. NUMERICAL METHOD: INTRODUCTION 

We now describe the numerical scheme used to study this model system. Because 
of the periodicity imposed on our functions, we may restrict our attention to any 
one period. Thus, we take as our computational domain the set of points 
B= {(x1, x2, x3): 0 6 xi < L, i= 1,2,3}, where we identify opposite sides of the 
cube, e.g., x1 = 0 and x1 = L. We place a uniform lattice of size h (h = L/Nh, Nh = a 
power of 2) over the cube and divide time into timesteps of size At. The Eulerian 
variables u, p and f are defined at points of the lattice and we use the usual notation 
~7, i2j3 = u(j, h, j, h, j, h, n At), etc. The particle points are not constrained to coincide 
with lattice points and we use the notation x” - kl - xkl(n. At) to denote the position of 
the Ith point of particle k at time n At. 

Hn order to move the points xk[ according to Eq. (3), the weighted-average of 
velocities in the neighborhood of xkl which appears in that equation is replace 
a similar average of the velocities at lattice points near xk[. To accomplish this, we 
introduce a discrete approximation DjljZn(x) to the function 6,(x). (DjljZh(x) is a 
three-dimensional version of Peskin’s discrete approximation to the delta-f~~c~~~~ 
[12-J.) Let 

$(l+cos(%)), if IrlG2h 
0, if 1~1 >2h. 

Then, Dj, jZ j,(x) is defined by 

We note that the function Djljzh(x) has support consisting of those lattice points 
within a cube of side 4h centered on x; Djljzj3(x) is of order he3 at x; and 
Ci, jZj3 h3Dj, jZjX(x) = 1 for any x. For any point x in our domain, we define t 
“interpolated velocity” 

u”+ ‘(x) = c uj:;f3 Dj, jzn(x) h3. 
it .i2 .A 

(27) 
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(As with the continuous function 6,(x), if (ji, jl, j,) in the support of Dj,j,j,(x) is 
outside the basic periodic box, its periodic image within the box is used instead.) 
We take the velocity of the point x1, to be the value u”+‘(x;~) given by Eq. (27) 
with x = x;[. 

We also use Djlizj3(x) to approximate 6,(x) in the definition of f(x, t) given by 
Eq. (5). Thus, we define values of the force density on the lattice by 

N M 

The superscripts denoting time are omitted in Eq. (28) for reasons that will be made 
clear below. The constant vector eh is defined so that a discrete version of the 
compatibility condition Eq. (6) on f holds on the lattice, i.e., 

C fjt j2j3 = O* (29) 
jt i2i3 

The internal particle forces are constructed in a way that ensures that 

so the vector ch is determined only by the external forces: 

‘h= -$jT t g f,?, 
k 11 1 

i.e., by the lattice average of the applied forces. The vector ch is typically much 
smaller than fE’ and f$. 

We note that s (as used in the definition of 6,(x)) is a physical parameter and h is 
a numerical parameter. Hence, in principle, the ratio s/h -+ co as h -+ 0 and the 
support of Djlizj,(x) should grow to reflect this. In practice, we use a finite mesh size 
of order s. 

The operations performed to advance the model system from time (n dt) to time 
(n + 1)dt are as follows: Values f,$,* for the internal spring forces are calculated 
using an approximately implicit scheme (see below) to avoid numerical instabilities 
in the motion of the points xki. These values are used in the right-hand side of 
Eq. (28), along with the prescribed external forces, to define the force density f;,$& 
at points of the lattice. Using these values of the force density, a new velocity field 
u;,iX is determined. Finally, the velocities are interpolated to the locations x;[ using 
Eq. (27), and the points xk, are moved to new positions 

x;: l = x& + At un+ ‘(x;g. (30) 

A description of the implicit force calculation is given below. The solution of the 
Stokes’ equations is also described below; a more detailed description of this 
portion of the numerical method is given in ES]. 
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4. INTERNAL PARTICLE FORCES 

The internal spring forces fE are calculated implicitly so as to avoid inducing 
instabilities in the motions of the points xk[. An approximately implicit scheme, 
similar to one introduced by Peskin 1121 (and previously used in ES]), proves 
sufficient to damp out these instabilities. The internal forces which act on the points 
xkl of the kth particle are functions only of the points in that particle and of the set 
of links connecting these points. It follows from this and from the approximation 
introduced below that the implicit calculation of all the internal forces uncouples 
into the separate determination of each particle’s internal forces. The calculation of 
the internal forces for particle k proceeds as follows: We define points xzr, ..‘, xzM 
by the system of equations 

x;r; = x& + At if $(x& , . . . . xzM), (311 

for I = 1, . . . . M, where M is the number of points which make up the kth particle. 
The parameter /z in Eq. (31) is the magnitude of the velocity induced by a localize 
unit force and was estimated numerically. The approximation built into Eq. (3 1) is 
that the fluid velocity at xk[ is proportional to the internal force f$ and is ~ndepe~~ 
dent of the forces fg, m # Z. Insofar as this approximation is valid, xzl, . . . . xzM is 
the configuration of points making up particle k at the end of the timestep. (We are 
ignoring here the motion induced by the external forces fEt.) Equation (31) is 
implicit because the forces are calculated from the (unknown) configuration 
x,& 9 .*-, &4 rather than from the given configuration x$i, . ..) x’&,. Using the solution 
of Eq. (31), we define 

fint , * = figt 
kl (%?I, ..., x&f). 632) 

We use these internal forces, along with the prescribed external forces, in E 
to define the force density for the Stokes’ equations. The new velocity field which is 
in equilibrium with all of the forces is calculated and the points xkl are move 
according to Eq. (30). We emphasize that the points xt[ are used only to calculate 
fint, * 

kl . 

In order to describe the means of solving Eq. (31), we introduce the notation 
X = (x,*,, . . . . x&); X0 = (xi,, . . . . ~2~); and F= (Grit kl, . . . . f&) and note that Pq. (31) 
can be expressed 

0=X-X0-,lAtF(X). (33) 

Although the Jacobian matrix of the (nonlinear) function X--/2 At F(X) is sym- 
metric, it is often indefinite in our calculations, so the multidimensional Newton- 
Raphson method is inappropriate for solving Eq. (33). Instead, we intro 
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a differentiable “energy function” E(E) such that the following conditions are 
satisfied: 

(i) E(X)>0 
(ii) E(x) -+ co as llxll + co 

(iii) F(x) = -grad E(X). 

(In terms of our original, notation, a suitable energy function is 
E=$CL CmEL,&iAl%-%cm II - ylm)‘. This is the same energy function as that 
defined in Eq. (15) except that here we consider one particle at a time). A minimum 
point of the function g(X) = 4 IIX - X0 II2 + A At E(X) is then a solution of Eq. (31). 
We use Gill and Murray’s modified Newton’s method (MNM) [7,8] to seek a 
minimum point of 4. This method can handle the symmetric but indefinite Hessian 
matrices that we encounter (the Hessian matrix of 4 is identical to the Jacobian of 
X - 1 At F(X) mentioned before.) 

In brief, Gill and Murray’s method works as follows: Let g be the gradient of 4 
and G be the Hessian matrix of 4. A sequence (xcq)} of approximations to a 
minimum point of 4 is defined iteratively by the equations 

(@I’+ A(4)) p(4) = mg(4) (34) 
x(4+ 1) =x(s) + &7)ph7)* (35) 

In Eq. (34), ,4(q) is a nonnegative diagonal matrix to be discussed below. The vector 
pcq) is called a search direction and ~1~~) is a positive scalar chosen to achieve a 
“sufficient decrease” in 4(q + I) relative to dcq). The process of choosing ~1~4) is called 
linesearch. We employ a safeguarded-cubic-interpolation linesearch algorithm 
similar to that described in [9]. 

The solution of Eq. (34) is facilitated by the symmetric Gaussian decomposition 

(G(4) + A(q)) = ,TJkl)TD(d u(4) 2 (36) 

where Ucq) is a unit upper-triangular matrix and Dcq) is a diagonal matrix. A(q) is 
constructed during the row-by-row factorization in such a way that: 

(i) Gcq) + A(q) is positive definite; 
(ii) diagonal elements of Dcq) are bounded away from zero by a positive 

constant 6; 
(iii) the inequality Id,,u$l Q p’ holds for S> Y, where p’ is a prescribed 

constant. 

Condition (i) guarantees that pcq) gives a descent direction for 4 as can be seen by 
premultiplying Eq. (34) by pcqJT. Conditions (ii) and (iii) ensure the numerical 
stability of the factorization and the subsequent forward and back substitution used 
in solving Eq. (34). 

Provided p’ has been suitably chosen, A(q) is automatically set to zero if Gcq) is 
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itself sufficiently positive definite in a sense defined by Gill and Murray [7]. The 
modified Newton’s method therefore reduces to Newton’s method where GcqJ is 
positive delinite (e.g., in the neighborhood of a minimum point of &)), and thus it 
has the locally quadratic rate of convergence exhibited by the Newton’s metho 
our calculations, convergence is usually achieved in 3 or 4 iterations. 

Recall that a separate energy minimization is performed for each model particle. 
In principle, these separate calculations could be performed in parallel. The C 
architecture does not support fully parallel computations, but it does support 
vector operations. The latter allows for substantial speed-up of a sequence of 
independent calculations provided they have identical structure. We obtain a code 
which is successfully vectorized by the CRAY FORTRAN compiler by replaei~~ 
appropriate assignment statements in a scalar implementation of the MNM with 
(innermost) DO-loops which run over the indices of particles of identical structure. 
Thus, the innermost loop runs over different sets of data (in this case each set of 
data involves information about one particle) to which the same algorithm is 
applied. We illustrate this conversion process with a simple example: One step of 
the MNM is the calculation of the maximum magnitude GAMMA of a diagonal 
element of the Hessian matrix G (q). For a scalar version of the algorithm, this 
calculation is accomplished by the FORTRAN loop 

Dimension G(MSIZE, MSIZE) 

GAhMA=O.O 
DO2J=l,MSIZE 

2 GAMMA = AMAXl (GAMMA, ABS(G(J, J))). 

For a vectorizable implementation of the algorithm, this portion of code is replaced 
by 

Dimension GAMMA (N) 
Dimension G (N, MSIZE, MSIZE) 

DOlI=l,N 
1 GAMMA(I)=O.O 

DO 2 J = 1, MSIZE 
D02I=I,N 

2 GAMMA (I) = AMAXl(GAMMA(I), G(l, J, J,))). 

Systematic use of this technique leads to a code in which almost every innermost 
DO-loop vectorizes. The only exceptions are a few IF statements which could not 
be rewritten in this way. 

We note that in each of our numerical experiments to date, all of the particles 
had the same structure. In general, with particles of differing structures, the set of 
particles would be partitioned into classes, each consisting of particles of identical 
structure, and vectorization would be achieved for each class. 

The factorization (34) as described by Gill and Murray requires order n3/6 
operations and order n2 storage locations, where n is the order of the Hessian 
matrix G(q). For our work, n is three times the number of points (xkL} use 
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construct one particle. Factorization of several Hessian matrices for each particle is 
usually required in each time step. For octahedral particles, IZ = 21, but for more 
elaborate particles, Hessian matrices of order lo&200 may result. Such matrices 
would be sparse, as each point xk[ would be linked to only a few neighboring 
points. In [S], Fogelson described a means of merging the MNM with the sparse 
symmetric Gaussian elimination algorithm of the Yale sparse matrix package [3] 
to reduce substantially the computational work and storage required for the 
factorization (34) of sparse Hessian matrices. This method could be adapted for use 
in minimizing the energy functions of particles constructed from many points. We 
note that the complicated linked-list data structure used by the sparse factorization 
routine to keep track of the nonzero entries of the Hessian would not interfere with 
successful1 vectorization of the code. This is because the innermost FORTRAN 
loops run over the indices of particles which have the same configuration of elastic 
links and for which, therefore, the zero/nonzero structure of the Hessian matrices 
would be the same. 

5. SOLUTION OF THE STOKES' EQUATIONS 

Next, we briefly describe the numerical solution of the projection form of the 
Stokes’ equations given in Eqs. (7)-(9). We assume that the force density f has been 
defined at all lattice points and that it satisfies the discrete compatibility condition 
Eq. (29). To describe our discretization of Eqs. (7~(9), we need to introduce the 
usual centered-, forward-, and backward-difference operators, Dp, D,++, and D,:, 
respectively, for each of the coordinate directions i. For example, Dptj(x) = 
(4(x + he,) - 4(x - hei))/2h, where ei is the unit vector in the i-coordinate direction 
and h is the lattice spacing. For a scalar function ti and a vector function 
u = (ul, ZQ, z+), we define discrete gradient, divergence, and Laplacian operators 

G$ = P%, D:$, @‘lcI) (37) 

DYI=D$~+D;u,+D$+ (38) 

gt+b= i D,+ D,:$. (39) 
i=l 

Each of these discrete operators is a second-order approximation to the 
corresponding differential operator. Our discrete approximation to Eqs. (7)-(9) is 

D.Gp=D.f (40) 

w=f-Gp (41) 
zu= -(l/p)w. (42) 

These equations are meant to hold at all points of the computational lattice. 
Discrete analogs of the compatibility conditions (10) and (11) must be satisfied. 
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That they are indeed satisfied follows from Eq. (29) and the periodicity of f and 9. 
We note that the operator D * G involves differences on a staggered grid; i.e., each 
point of the lattice is coupled to its second neighbors, while the operator 5? 
involves nearest-neighbor coupling. It follows from Eq. (40) and (41) that D. w = 
Equation (42) and the periodicity of u then imply that D . u = 0 as well. The discrete 
divergence of u would not vanish if the operator 2 had been used to approximate 
the Laplacian in the equation for the pressure. 

Equations (40)-(42) constitute a set of four discrete Poisson equations that we 
solve to determine u and p. Despite the different grids underlying the discrete 
Laplacian operators in the pressure and velocity equations, essentially the same 
method of solution is used in both equations. This is the Fourier-Toeplitz method 
[4]. We outline its application to the pressure equation. Let q= D. f. Then, we 
wish to solve 

(43) 

at all points (j,h, j,h, j,h) of the lattice. Let 

1 N*-1 A+-1 

qjljzj3=F2 C C Qj,(klTkz)exP 
h kl=O kz=O 

(44) 

and 

Substitution of these into Eq. (43) yields, for each (k,, k2), a periodic tridiago~a~ 
system for the Fourier coefficients P,,(k,, k,): 

= -2hQj,(kl> k,) (46) 

for j, =O, 1, 2, . . . . N, - 1 (Nh = L/h = a power of IE), with subscript arithmetic 
modulo Nh. Because of the staggered differencing present in Eq. (46), we, in fact, 
ha.ve two NJ2 x NJ2 periodic tridiagonal systems for each (k,, k,), one for od 
and one for even j,. The solutions of each such periodic tridiagonal system are 
found by forming a suitable linear combination of the solutions of two related 
nonperiodic tridiagonal systems. 

The data storage requirements for the fluid dynamics calculation exceed the 
central memory storage capacity of computers even as large as the CRAY X-M 
For this reason, we have implemented an ‘“out-of-core” version of the flui 
dynamics algorithm, in which, at any particular instant during the calculations, 
only a small subset of the data resides in central memory; the reminder of the dat 
reside on the disk. Thus, data must be read from the disk to central memory an 
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vice versa. Such input/output operations are slower than arithmetic computations, 
so we have implemented the fluid-dynamics algorithm in a way that overlaps steps 
of the algorithm that use the same data. We should point out that, with very minor 
programming changes, the numerical method can be (and has been) used on the 
CRAY-2, which has an enormous central memory, with all of the data residing in 
central memory. 

The fluid dynamics algorithm has been implemented in such a way that all inner- 
most loops vectorize. The numerical solution of the Stokes’ equations is discussed 
at greater length in [6]. 

6. COMPUTATIONAL WORK 

The work required to carry out the solution of the fluid dynamics equations is 
order Nz(log NJ, where Nh is the number of lattice points in each coordinate 
direction. The work required for the particle calculations is proportional to the 
number of particles. This contrasts with other methods that involve direct particle- 
particle interactions and for which the work is proportional to the square of the 
number of particles. The relative efficiency of the present method suggests that it 
will be especially useful for calculations with large numbers of particles. It is worth 
remarking that the computational time (CPU time) required by our calculations 
actually grows less rapidly than it would seem from the above discussion. This is a 
consequence of the improved efficiency of.vectorization as the vector length grows. 

7. RESULTS 

We present simulations of one-, two-, and many-particle systems that involve 
the sedimentation of the particles under gravity. For all of these simulations, the 
external force is given by 

fzt = -ge,, (47) 

where e3 is a unit vector in the up direction and g is constant. The stiffnesses of the 
internal elastic links are large so that we are approximating rigid particles. 

The no flux condition at the surface of a particle certainly is satisfied when a 
large number of points is used to construct the particle, for these points move at the 
local fluid velocity and the interpolated velocity field is slowly varying. Figure 2 is 
from a simulation of the settling of an octahedral particle, a particle which consists 
of only seven points. The picture depicts the situation after the particle has fallen 
approximately ten particle diameters and shows the interpolated velocity field (as 
defined by Eq. (27)) near the particle in a vertical plane which bisects the 
octahedron. The frame of reference is one in which the average of the velocities of 
the left and right vertices is zero. The vertices of the octahedron are separated by 
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FIG. 2. Vertical section through center of mass of octahedral particle settling under gravity. Arrows 
show interpolated velocity field in rest frame of particle. Crosses indicate lattice points. Reprinted with 
permission. 

distances that deviate by less than one percent from their initial values. The 
interpolated velocity field, which is plotted at points separated by $ of the mes 
space used in the fluid dynamics calculations, is nearly zero for the fluid contained 
within the octahedron and in its immediate vicinity. This calculation shows the 
effectiveness of using a suitable configuration of point forces (even as few as seven) 
to cause nearby fluid to move as a rigid body. 

Arguments based on symmetry and the linearity of the Stokes’ equations can be 
used to show that two identical rigid spheres which are initially at the same height 
will settle along parallel vertical lines. We conducted a series of numerical 
experiments to see how well our method could reproduce this result. Figure 3a 
shows the settling of two particles each constructed from 21 points distributes at 
the vertices and center of a dodecahedron. The Stokes’ equations were solved on a 
643 lattice. The two particles fall nearly in parallel; each particle’s trajectory 
deviates from the vertical by an angle of about 0.2”. (The particles rotate in 
opposite directions as they fall.) We did a similar experiment with two octab~dral 
particles (7 points per particle) and a 643 lattice, and another with two “refined 
octahedra” (19 points per particle) each of which was constructed from an act 
hedral particle by inserting an additional point at the midpoint of each e 
linking together the new points of each face. This last calculation was perfor 
using a 1283 lattice. In the Fig. 3b, we plot the distance between the centers of 
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FIG. 3. (a) Sequence of vertical sections through centers of mass of two dodecahedral particles 
settling under gravity. Vertical extent of panel is one computational period L. (b) Distance between 
centers of mass versus time for 2 octahedra (dotted curve), 2 dodecahedra (dashed curve), and 2 “refined 
octahedra” (solid curve) settling under gravity. Reprinted with permission. 

mass of the two particles as a function of time for each of these experiments. The 
theoretical result to which these graphs should be compared is the horizontal line, 
DISTANCE = 6. We see that as the particles are made “more spherical” through 
the use of a larger number of points per particle, and also as the computational 
mesh is refined, the numerical results approach the theoretical result for rigid 
spheres. (Note, however, that in the “refined octahedra,” the additional points are 
not projected onto the sphere in which the particle is inscribed.) In all of these 
experiments, the nominal radius of each particle (i.e., the radius of the smallest 
circumscribing sphere) was 1.0, the initial interparticle distance was 6.0, and the 
imposed spatial period in the calculation was 64.0. 

We also calculated the ratio of the settling speed for two particles to that for a 
single particle and compared this ratio to that predicted by a calculation using the 
method of reflections applied to two rigid spheres, as described, for example, in 
Happel and Brenner [lo]. For each of the numerical experiments described above, 
the ratio was within 9 % of that given by the method of reflections calculation; for 
the “refined octahedra,” the ratios differed by less than 3 %. 

Two identical rigid spheres, which settle from different initial heights, move in 
parallel, each proceeding along a line that lies between the vertical line through it 
and the line through the two particles’ centers of mass. Figure 4 shows a numerical 
simulation of this phenomenon. The particles were modeled by dodecahedra and 
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FIG. 4. Sequence of vertical sections through centers of mass of two dodecahedral particles settling 
under gravity from different initial heights. Reprinted with permission. 

the calculation was done using a 643 lattice. The angle of fall observed in this 
simulation was 4.5”, which compares favorably with a prediction of 5.0” based on a 
calculation using the method of reflections [lo]. 

We next describe two types of multi-particle experiments each of which involve 
125 particles. In the first of these experiments, octahedral particles were initially 
distributed on a cubic lattice which filled the periodic cube B used in our 
calculations. The observed average settling speed of the 125 particles was compared 
to a prediction based on Hasimoto’s theory for the settling of a periodic cubic array 
of spheres [ 111. For the situation we considered, Hasimoto’s theory predicts a 
settling speed of approximately 

where a is the particle radius, g is the gravitational force on each sphere, an 
/? = @(a/Z)’ is the volume fraction for particles spaced a distance E from one 
another. In order to use Eq. (48) to predict a settling speed for an array of particles, 
the particle radius must be known. The effective radius of one of our octahedral 
particles is larger than the radius of the sphere in which its vertices are inscribed. 
This is because each of the vertices has, in effect, a nonzero extent (recall Fig. I) 
which augments the nominal radius of the octahedron. If we set U, equal to the 
settling speed observed in our single octahedron experiments, and the i~ter~a~~~cl~ 
spacing I equal to the imposed period L inherent in our calculations, then we can 
solve Eq. (48) for an effective radius, aelf, of the octahedral particle. Determining a,@ 
in this way yields a volume fraction fi = 0.019 for our 125-particle experiment. Thus, 
Hasimoto’s theory predicts a settling speed of 0.00339 cm/s for this experiment This 
differs by just over 5 % from our observed settling speed of 0.00357 cm/s. 
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Our second multi-particle experiment involved 125 octahedral particles whose 
random initial positions were chosen from a uniform distribution without overlap. 
The observed settling speed early in the calculation (while the distribution was still 
random) was compared to Batchelor’s prediction for the settling speed of a random 
array of spheres [ 11. To first order, this prediction is 

U,=(l.O-6.55/?)U,, (49) 

where U, is the single particle settling speed. With volume fraction /I = 0.019, as in 
the previous experiment, Eq. (49) predicts a settling speeds which differs by 4% 
from the particle-averaged settling speed, UrZ5, we observed. Since p is small in this 
experiment, it may be more useful to compare the “correction coefficient” 
( U125 - U,)/( -/3U,) = 8.48, based on our computations; with Batchelor’s coefficient 
of 6.55. Of course, many such experiments, with different random choices for the 
patches’ initial positions must be performed in order to make meaningful com- 
parisions between Batchelor’s theory and our computational results. Yet, even from 
these preliminary experiments, we see that the correction in the random case is of 
the right order of magnitude; and that the numerical method can clearly distinguish 
between the case of a periodic array of particles, for which the settling speed should 
be approximately 40% less than for a single particle (for /? = 0.019), and a random 
array for which the slowdown should be approximately 12%. 

The above calculations were performed on CRAY-1 and CRAY-2 computers at 
the Minnesota Supercomputing Center. For the calculations on the CRAY-1, use of 
disk storage was essential. The central memory capacity of the CRAY-2 is 
sufficiently large that all of our data could reside in central memory even when we 
used a (128)3 lattice. An indication of the CPU time required for the fluid and 
particle portions of our calculations comes from two runs of 100 timesteps, each of 
which used a (64)3 grid. In the first of these runs, IZO particles were present, and the 
average CPU-time/timestep was 1.67 s. The second run involved fluid and 64 
octahedral particles. The average CPU-time/timestep here was 2.73 s; hence, the 
particle calculations for 64 particles took just over 1 s/timestep. 

8. CONCLUDING REMARKS 

We have presented a new fast numerical method for studying in three dimensions 
the dynamics of particles suspended in a very viscous fluid. The method’s behavior 
compares favorably in a variety of tests with existing theories for sedimentation in 
two- and many-particle systems. Still, these results are preliminary; more 
sophisticated comparisons of the method with theory and experiment for a range of 
physical situations are needed to foster confidence in its predictions. Also, much 
work remains to be done to characterize better the influence of numerical 
parameters (e.g., mesh size, number and arrangement of points and links in a 
particle, stiffness of links) on the results produced by the method. In addition, the 
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method can be made more efficient, e.g., by exploiting the sparseness of the Hessian 
matrices in the particle-force calculations. Yet, we think it is not premature to say 
that the method will prove to be a powerful numerical tool for conducting 
multiparticle studies of a wise range of, suspension flows. Among the special 
strengths of the numerical methods are its relative efficiency in handling Large 
numbers of particles and its ability to treat particles of different sizes and shapes. 
While we have thusfar only looked at the rigid-particle limit, we expect that the 
method will also allow the study of suspensions of deformable particles an 
polymers. Further, the method is not limited to studying flows in unboun 
domains, as walls (e.g., those of a tube) can also be assembled out of arrays of the 
same kind of localized forces as those used to model the particles. 
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